

SIES College of Arts, Science & Commerce (Autonomous)

Department of Statistics

Faculty: Science Program: B.Sc. Course: Statistics

Syllabus for S.Y.B.Sc. (Credit Based Semester and Grading System with effect from the academic year 2018–2019)

SEMESTER III

THEORY

TITLE OF COURSE		PROBABILITY DISTRIBUTIONS		
COURSE CODE	UNIT	TOPICS	LECTURES/W EEK	CREDITS
	Ι	UNIVARIATE RANDOM VARIABLES (DISCRETE AND CONTINUOUS)	1	
PAPER I SIUSSTA31	п	STANDARD DISCRETE PROBABILITY DISTRIBUTIONS	1	2
	ш	STANDARD CONTINUOUS PROBABILITY DISTRIBUTIONS	1	
TITLE OF COURSE		THEORY OF SAMPLING	I	
COURSE CODE	UNIT	TOPICS	LECTURES/W EEK	CREDITS
	Ι	CONCEPTS OF SAMPLING & SIMPLE RANDOM SAMPLING	1	
PAPER II SIUSSTA32	П	STRATIFIED SAMPLING	1	2
	III	RATIO & REGRESSION ESTIMATION AND SAMPLING METHODS	1	
TITLE OF COURSE		OPERATIONS RESEARCH I		
COURSE CODE	UNIT	TOPICS	LECTURES/W EEK	CREDITS
_ /	Ι	LINEAR PROGRAMMING PROBLEM	1	
PAPER III SIUSSTA33	Π	TRANSPORTATION PROBLEM	1	2
	III	ASSIGNMENT PROBLEM & SEQUENCING	1	

PRACTICALS

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
	SIUSSTA31	3	
SIUSSTAP3	SIUSSTA32	3	3
	SIUSSTA33	3	

SEMESTER IV

TITLE OF COURSE	PROBABILITY AND SAMPLING DISTRIBUTIONS			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	I	NORMAL DISTRIBUTION	1	
PAPER I SIUSSTA41	II	BIVARIATE PROBABILITY DISTRIBUTIONS	1	2
	III	EXACT SAMPLING DISTRIBUTIONS	1	
TITLE OF COURSE	ANALYSIS OF VARIANCE & DESIGN OF EXPERIMENTS			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	ANALYSIS OF VARIANCE	1	
PAPER II SIUSSTA42	II	DESIGN OF EXPERIMENTS	1	2
	III	LATIN SQUARE DESIGN & FACTORIAL EXPERIMENTS	1	
TITLE OF COURSE		OPERATIONS RESEARCH II		
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	CPM AND PERT	1	
PAPER III SIUSSTA43	II	GAME THEORY	1	2
	III	DECISION THEORY	1	

THEORY

PRACTICALS

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
	SIUSSTA41	3	
SIUSSTAP4	SIUSSTA42	3	3
	SIUSSTA43	3	

SYBSc SYLLABUS UNDER AUTONOMY SEMESTER III

PAPER I

- To study characteristics of discrete and continuous distributions.
- To learn R software to study distributions.

Course Code	Title	Credits	
		2 Credits	
SIUSSTA31	PROBABILITY DISTRIBUTIONS	(45 lectures)	
UNIT I: UNIV	ARIATE RANDOM VARIABLES (DISCRETE AND		
CONTINUOU	S)		
Moment Genera	ating Function, Cumulant generating Function and Characteristic		
function-Defini	tion and properties: Effect of change of origin and scale, MGF,		
CGF and Chara	cteristic function of sum of n independent random variables,	15 Lectures	
moments from	MGF, CGF and Characteristic function. Relationship between		
moments and co	umulants.		
Transformation	of univariate random Variable.		
UNIT II :STA	NDARD DISCRETE PROBABILITY DISTRIBUTIONS		
Degenerate, Un	iform, Two point, Bernoulli, Binomial, Poisson, Geometric,		
Negative Binon	nial, Hypergeometric, Truncated Binomial, Truncated Poisson		
(point of trunca	tion 0) distributions.		
The following a	spects (wherever applicable) of the above distributions to be		
discussed:		15 Lectures	
Probability mas	s function, Cumulative distribution function, Mean, Mode and		
Standard deviat	ion. Moment Generating Function, Cumulant Generating Function,		
Additive proper	ty, Recurrence relation for Central Moments, Skewness and		
Kurtosis, Limit	ing distribution, Fitting of Distribution.		
UNIT III : STA	ANDARD CONTINUOUS PROBABILITY DISTRIBUTIONS		
Rectangular, Tr	iangular with parameters (a, b, c), Exponential, Gamma (with one		
& two parameter	ers), Beta (Types I & II). Cauchy (with one & two parameters)		
The following a	The following aspects of the above distributions(wherever applicable) to be		
discussed:		15 Lectures	
Mean, Median,	Mode & Standard deviation. Moment Generating Function,		
Additive proper	rty, Cumulant Generating Function. Skewness and Kurtosis		
(without proof)	. Fitting of Distribution. Interrelations between the distributions.		

SEMESTER III: PRACTICALS BASED ON COURSE SIUSSTA31

- 1. Moment Generating Function, Cumulant Generating Function.
- 2. Characteristic Function, Transformation of univariate discrete & continuous random variables.
- 3. Standard Discrete Distributions.
- 4. Fitting of Standard Discrete Distributions.
- 5. Standard Continuous distributions.
- 6. Fitting of Standard Continuous Distributions.
- 7. Use of R.

- 1. Goon A.M., Gupta M.K & Dasgupta B. (2013). An Outline of Statistical Theory,
- 2. Gupta S.C.& Kapoor V.K. (2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 3. Hoel P. G. (1966). Introduction to Mathematical Statistics, Fourth Edition : John Wiley & Sons Inc.
- Hogg R. V.& Craig A.T.(2012) Introduction to Mathematical Statistics, Seventh Edition: Collier McMillan Publishers.
- Hogg R. V.& Tannis E. A. (1988). *Probability and Statistical Inference*, Third Edition: Collier McMillan Publishers.
- 6. Kapur J. N.& Saxena H.C. Mathematical Statistics, Fifteenth Edition : S. Chand & Company Ltd.
- 7. Medhi J. (2013). Statistical Methods; An Introductory Text, Second Edition: Wiley Eastern Ltd.
- Miller I., Miller M.& Freund J.E.(1999) *John E. Freund's Mathematical Statistics*, Sixth Edition: Pearson Education Inc.
- Mood A. M., Graybill F.A., & Boyes D. C. (2001). *Introduction to the theory of Statistics*, Third Edition: McGraw-Hill Book Company.
 - Vol. 1, Third Edition: The World Press Pvt. Ltd.

PAPER II

- To learn different methods of data collection.
- To analyse the collected data using sampling techniques.

Course Code	Title	Credits	
		2 Credits	
SIUSSTA32	THEORY OF SAMPLING	(45 lectures)	
UNIT I: CONC	EPTS OF SAMPLING & SIMPLE RANDOM SAMPLING		
Population, Popu			
Unbiasedness, M			
Census survey, S	Sample Survey. Steps in conducting a sample survey, Designing		
appropriate Ques	ropriate Questionnaire. Sampling and Non-sampling errors. NSSO, CSO and		
functions. Metho	ods of Probability and Non Probability sampling.		
Definition, Samp	bling with & without replacement (WR/WOR). Lottery method & use of	15 Lectures	
Random number	s to select Simple random sample. Estimation of population mean & total.	10 10000105	
Expectation & V	ariance of the estimators, Unbiased estimator of variance of these		
estimators. (WR	WOR).Estimation of population proportion and total. Expectation &		
Variance of the e	estimators, Unbiased estimator of variance of these estimators.		
(WR/WOR).Esti	mation of Sample size based on a desired accuracy in case of SRS for		
variables & attri	outes. (WR/WOR).		
UNIT II: STRA	TIFIED SAMPLING		
Need for Stratific	cation of population. Definition of Stratified Sample. Advantages of		
Stratified Sampli	ng.		
Estimation of po	pulation mean & total in case of Stratified Random Sampling (WOR		
within each strat	within each strata). Expectation & Variance of the unbiased estimators, Unbiased		
estimators of var	iances of these estimators.	15 Lectures	
Proportional allo	cation, Optimum allocation with and without varying costs. Comparison		
of Simple Rando	m Sampling, Stratified Random Sampling using Proportional allocation &		
Neyman allocati	on.		
Estimation of po	pulation proportion & total in case of Stratified Random Sampling (WOR		
within each strat	a).		
UNIT III: RAT	IO & REGRESSION ESTIMATION AND SAMPLING METHODS		
Estimators Estir	nators of MSE		
Regression Estin	nators for population Mean & Total Expectation & Variance of the		
Estimators assur	ning known value of regression coefficient 'b'. Estimation of 'b'.	15 Lectures	
Resulting varian	ce of the estimators. Comparison of Ratio. Regression & mean per unit		
estimators.	i i i i i i i i i i i i i i i i i i i		
Introduction to Systematic sampling, Cluster sampling & Two Stage sampling.			

SEMESTER III: PRACTICALS BASED ON COURSE SIUSSTA32

- 1. Designing of Questionnaire.
- 2. Simple Random Sampling for Variables.
- 3. Simple Random Sampling for Attributes.
- 4. Estimation of Sample Size in Simple Random Sampling.
- 5. Stratified Random Sampling.
- 6. Ratio Estimation.
- 7. Regression Estimation.

REFERENCES:

- 1. Cochran. W.G. (1978). Sampling Techniques, Third Edition: Wiley Eastern Limited
- 2. Daroga Singh & F.S. Chaudhary. (1986). *Theory and Analysis of Sample Survey Design :* Wiley Eastern Ltd
- 3. Des Raj. (1968). Sampling Theory: McGraw Hill Series in Probability and Statistics.
- 4. Gupta S.C.& Kapoor V.K. (2007).*Fundamentals of Mathematical Statistics*: Sultan Chand & Sons
- 5. Mukhopadhyay P. (1998). Theory and Methods of Survey Sampling: Prentice Hall of India
- 6. Murthy M.N.(1967). Sampling Theory and methods: Statistical Publishing Society.
- 7. P.V. Sukhatme & B.V. Sukhatme. (1984). *Sampling Theory of Surveys with Applications*, Third Edition: Iowa State University Press.

Pvt. Ltd.

8. Sampath S.(2005). *Sampling Theory and Methods*, Second Edition: Narosa Publishing House

PAPER III

- To understand typical industry problems like transportation, assignment etc.
- To learn MS Excel to solve problems related to optimization.

Course Code	Title	Credits
CILICOT A 22	ODED ATIONS DESEADCH I	2 Credits
510551A55	OPERATIONS RESEARCH I	(45 lectures)
UNIT I: LINE Mathematical F Solution, Basic problems with t or more variabl L.P.P. Relation Economic inter	AR PROGRAMMING PROBLEM Formulation: Maximization & Minimization. Solution, Feasible Feasible Solution, Optimal solution. Graphical Solution for wo variables. Simplex method of solving problems with two es. Big M method. Concept of Duality. Its use in solving ship between optimum solutions of Primal and Dual. pretation of Dual.	15 Lectures
UNIT II: TRANSPORTATION PROBLEM Mathematical Formulation, Solution, Feasible Solution. Initial Basic Feasible Solution by North-West Corner Rule, Matrix Minima Method, Vogel's Approximation Method. Optimal Solution by MODI Method. Optimality test, Improvement procedure. Variants in Transportation Problem: Unbalanced, Maximization, Prohibited route type.		15 Lectures
UNIT III: ASS Assignment: M Method and Hu Unbalanced, M Travelling Sale Sequencing Pro through m Mac	IGNMENT PROBLEM & SEQUENCING athematical Formulation. Solution by Complete Enumeration ngarian method. Variants in Assignment Problem: aximization type, Restricted (prohibited) route. sman Problem. blem: Processing n Jobs through 2 and 3 Machines & 2 Jobs hines.	15 Lectures

SEMESTER III: PRACTICALS BASED ON COURSE SIUSSTA33

1. Formulation and Graphical Solution of L.P.P.
2. Simplex Method.
3. Duality.
4. Transportation.
5. Assignment.
6. Sequencing.
7. Use of TORA & MS Excel Solver

- Bronson R. (1997). Schaum Series book in Operations Research. Second edition: Tata McGraw Hill Publishing Company Ltd.
- 2. Kantiswaroop & Gupta M. (2010). Operations Research, Twelfth Edition: S Chand & Sons.
- Sasieni M., Yaspan A.& Friedman L. (1959). Operations Research; Methods and Problems: John Wiley & Sons.
- Sharma J. K. (1989). Mathematical Models in Operations Research : Tata McGraw Hill Publishing Co. Ltd.
- 5. Sharma J.K. (2001). Quantitative Techniques for Managerial Decisions: MacMillan India Ltd.
- 6. Sharma S.D. Operations Research. Eleventh Edition: Kedar Nath Ram Nath & Company.
- 7. Taha H. A.(2010). Operations Research. Ninth Edition: Prentice Hall of India.
- Wagner H. M. (1970). Principles of Operations Research with Applications to Management Decisions, Second Edition : Prentice Hall of India Ltd.

SYBSc SYLLABUS UNDER AUTONOMY SEMESTER IV PAPER I

- To study normal distribution and its applications.
- To use sampling distributions in testing equality of means, independence of attributes, goodness of fit, etc.

Course Code	Title	Credits
		2 Credits
SIUSSTA41	PROBABILITY AND SAMPLING DISTRIBUTIONS	(45 lectures)
UNIT I: NORMAL I	DISTRIBUTION	
Mean, Median, Mode,	Standard deviation, Moment Generating function, Cumulant	
Generating function, N	Moments & Cumulants (up to fourth order). Recurrence	
relation for central mo	ments, skewness & kurtosis, Mean absolute deviation.	15 Lectures
Distribution of linear f	function of independent Normal variables. Fitting of Normal	
Distribution. Central I	imit theorem for iid random variables.	
Log Normal Distributi normal variables.	on: Mean, variance, distribution of product of independent log	
UNIT II: BIVARIAT	TE PROBABILITY DISTRIBUTIONS	
Joint Probability mass density function for co conditional Distribution Expectation & Variand Transformation of Ran	function for Discrete random variables, Joint Probability ontinuous random variables and properties. Marginal and ons. Independence of Random Variables. Conditional ce. Regression Function. Coefficient of Correlation. ndom Variables and Jacobian of transformation.	15 Lectures
UNIT III: EXACT S	AMPLING DISTRIBUTIONS	
Chi-Square Distribution Standard deviation. M Additive property, Dis Normal variables. San their independence for proof). Applications of population, Test of sig population. Test for go correction.	on: Concept of degrees of freedom. Mean, Median, Mode & oment generating function, Cumulant generating function. Attribution of the sum of squares of independent Standard appling distributions of sample mean and sample variance and the a sample drawn from Normal distribution (without T Chi-Square: Confidence interval for the variance of a Normal quificance for specified value of variance of a Normal bodness of fit, Test for independence of attributes, Yates'	15 Lectures

t-distribution: Derivation of p.d.f. of t ,Mean, Median, Mode & Standard deviation.. Asymptotic properties. Students's t, Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on independent samples with equal variances & dependent samples).

F-distribution: Mean, Mode & Standard deviation. Distribution of Reciprocal of an F variate, Ratio of two independent Chi-squares divided by their respective degrees of freedom. Interrelationship of F with t-distribution, Chi-square distribution & Normal distribution. Applications of F .Confidence interval for ratio of variances of two independent Normal populations. Test for equality of variances of two independent Normal populations.

SEMESTER IV: PRACTICALS BASED ON COURSE SIUSSTA41

1.	Normal Distribution
2.	Fitting of Normal distribution, Central Limit Theorem.
3.	Bivariate Probability Distributions.
4.	Transformation of bivariate continuous random variables.
5.	Chi Square distribution.
6.	t distribution.
7.	F distribution.
8.	Use of R

<u>REFERENCES:</u>

- Goon A.M., Gupta M.K & Dasgupta B. (2013). An Outline of Statistical Theory. Vol. 1, Third Edition: The World Press Pvt. Ltd.
- Gupta S.C.& Kapoor V.K. (2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- Hoel P. G. (1966). Introduction to Mathematical Statistics, Fourth Edition : John Wiley & Sons Inc.
- Hogg R. V. & Tannis E. A. (1988). *Probability and Statistical Inference*, Third Edition: Collier McMillan Publishers.
- Hogg R. V. &Craig A.T. (2012) Introduction to Mathematical Statistics. Seventh Edition: Collier McMillan Publishers.
- Kapur J. N.& Saxena H.C. *Mathematical Statistics*, Fifteenth Edition : S. Chand & Company Ltd.
- Medhi J. (2013). Statistical Methods: An Introductory Text. Second Edition: Wiley Eastern Ltd.
- Miller I., Miller M., Freund J.E. (1999) *John E. Freund's Mathematical Statistics*, Sixth Edition: Pearson Education Inc.
- Mood A. M., Graybill F.A.& Boyes D. C. (2001). *Introduction to the theory of Statistics*. Third Edition: McGraw-Hill Book Company.

PAPER II

- To design an experiment for specified objectives.
- To evaluate the data collected using ANOVA techniques.

Course Code	Title	Credits
SIUSSTA42	ANALYSIS OF VARIANCE & DESIGN OF EXPERIMENTS	2 Credits (45 lectures)
UNIT I: ANAL	YSIS OF VARIANCE chran's Theorem (Statement only).	
One way classifi	cation with equal & unequal observations per class, Two way	
classification wit	h one observation per cell.	
Mathematical Me	odel, Assumptions, Expectation of various sum of squares,	15 Lectures
F- test, Analysis	of variance table.	
Least square esti	mators of the parameters, Variance of the estimators, Estimation of	
treatment contras	sts, Standard Error and Confidence limits for elementary treatment	
contrasts.		
UNIT II: DESIC Experiment, Exp	GN OF EXPERIMENTS erimental unit, Treatment, Yield, Block, Replicate, Experimental Error,	
Precision. Princip	ples of Design of Experiments: Replication, Randomization & Local	
Control.		
Efficiency of des	ign D1 with respect to design D2.	
Choice of size, sl	hape of plots & blocks in agricultural & non agricultural experiments.	
Completely Rand	15 Lectures	
Mathematical Me	odel, Assumptions, Expectation of various sum of squares,	
F-test, Analysis o		
Least square esti-		
treatment contrasts, Standard error and Confidence limits for elementary treatment		
contrasts. Efficie	ncy of RBD relative to a CRD.	
Missing plot tech	nique for one missing observation in case of CRD and RBD.	
UNIT III: LAT	IN SQUARE DESIGN & FACTORIAL EXPERIMENTS: esign: Mathematical Model Assumptions Expectation of various sum of	
squares, F-test.	Analysis of variance table. Advantages, Least square estimators of the	
parameters. Var	jance of the estimators. Estimation of treatment contrasts. Standard error	
and Confidence	limits for elementary treatment contrasts. Efficiency of the design	
relative to RBD	, CRD.	15 Lectures
Missing plot tec	hnique for one missing observation in case of LSD	
Factorial Experi	ments: Advantages. 2 ² , 2 ³ Experiments. Definition of Orthogonal	
Contrast, Calcul	ation of Main & Interaction Effects. Yates' method. Analysis of 2^2 & 2^3	
factorial Experi	ments.	

SEMESTER IV: PRACTICALS BASED ON COURSE SIUSSTA42

1. One way Analysis of Variance.
2. Two way Analysis of Variance.
3. Completely Randomized Design.
4. Randomized Block Design.
5. Latin Square Design.
6. Missing Observations in CRD, RBD & LSD.
7. Factorial Experiments.
8. Use of R

- 1. Cochran W.G.& Cox G.M.(1992). Experimental Designs, Second Edition: John Wiley and Sons.
- Das M.N.& Giri N.C. (1986). *Design and Analysis of Experiments*. Second Edition: New Age International (P) Limited.
- Federer W.T.(1955). *Experimental Design, Theory and Application*: Oxford & IBH Publishing Co. Pvt. Ltd.
- 4. Gupta S.C.& Kapoor V. K. (2001) *Fundamentals of Applied Statistics*, Third Edition: Sultan Chand and Sons.
- 5. Kempthorne O.(1994). The Design and Analysis of Experiments: John Wiley and Sons.
- 6. Montgomery D.C.(2012). Design and Analysis of Experiments, Sixth Edition : John Wiley & Sons.
- 7. Winer B.J. (1962). Statistical Principles in Experimental Design : McGraw Hill Book Co.

PAPER III

- To understand planning and evaluation of project.
- To acquire skills in strategy planning and decision making.

Course Code	Title	Credits
SIUSSTA43	OPERATIONS RESEARCH II	2 Credits (45 lectures)
UNIT I: CPM Objective and activities in a p Float times. Deproject schedul	15 Lectures	
UNIT II: GAN Definitions of t pure and mixed dominance pro of (2 x n) and (15 Lectures	
UNIT III: DE Decision makin criterion, Maxi criterion. Decision makin Opportunity Lo Expected Valu Posterior analy Decision tree a	CISION THEORY ng under uncertainty: Laplace criterion, Maximax (Minimin) min (Minimax) criterion, Hurwitz α criterion, Minimax Regret ng under risk: Expected Monetary Value criterion, Expected oss criterion, Expected Payoff of Perfect Information (EPPI), e of Perfect Information (EVPI). Bayesian Decision rule for sis. nalysis along with Posterior probabilities.	15 Lectures

SEMESTER IV: PRACTICALS BASED ON COURSE SIUSSTA43

1. Gantt chart and CPM		
2. PERT		
3. Project cost analysis		
4. Updating		
5. Game Theory I		
6. Game Theory II		
7. Decision Theory I		
8. Decision Theory II		
9. QM for windows		

- Bronson R. (1997). Schaum Series book in Operations Research. Second edition: Tata McGraw Hill Publishing Company Ltd.
- 2. Kantiswaroop & Gupta M. (2004). Operations Research. Fourth Edition: S Chand & Sons.
- Sasieni M., Yaspan A.& Friedman L. (1959). Operations Research; Methods and Problems: John Wiley & Sons.
- Sharma J. K. (1989). *Mathematical Models in Operations Research:* Tata McGraw Hill Publishing Co. Ltd.
- 5. Sharma J.K. (2001). Quantitative Techniques for Managerial Decisions: MacMillan India Ltd.
- 6. Sharma S.D. Operations Research, Eleventh Edition: Kedar Nath Ram Nath & Company.
- Srinath L. S. (2001). *PERT and CPM, Principles and Applications*. Third Edition: East-West Press Pvt. Ltd.
- 8. Taha H. A. (2010). Operations Research. Ninth Edition: Prentice Hall of India.

EXAMINATION PATTERN

20 Marks.

20 Marks.

Internal Assessment of Theory per Course per Semester

1. Class Test	
2. Project / Assignment / Presentation etc.	

Semester End Theory Examination per Course

At the end of the semester, examination of 2 hours duration and 60 marks based on the three units shall be held for each course.

Pattern of Theory question paper:

There shall be four compulsory questions of 15 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.

Semester End Practical Examination per Course

1. Journal10 Marks.2. Practical Examination40 Marks.At the end of the semester, practical examination of 1 hour 30 minutes duration and 40 marks shall
be held for each course.

Pattern of Practical question paper:

There shall be four compulsory questions of 10 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.